Increase conversions and understand your customers better using intelligent systems
Today, most retailers apply expert-based pricing to save time spent on analyzing large volumes of online and offline price data. Machine learning allows you to automatically handle historical and competitive data and offer pricing recommendations. Unlike human managers, it can detect hidden relations between different variables and provide accurate ROI prediction.
Any activity leading to better customer service will bring retailers massive payoffs - especially if it can be done without allocating more resources. AI presents an opportunity to respond to customer requests faster and address arising issues instantly. Computer vision allows for improving security and plan store layout for better engagement. And analytics tools will help you learn about purchasing trends and predict customer satisfaction.
Effective supply chain operations rely heavily on how warehouses are run: their design and layout, accuracy of inventory counts and locations, and organized packing and shipping processes. Most inventory mistakes are the result of human error or manual quality control. While automating warehouse work with robots may initially be a serious disruption, computer vision solutions or sorting algorithms can eliminate most mistakes and optimize supply chain management.
Utilize big data analytics in retail using machine learning techniques and be rewarded with an expanded analysis of your supply management productivity: demand forecasting, AI-driven production planning and scheduling, personalized customer experience, etc.
Keep track of products using automated monitoring systems. Improve customer relationships by recommending goods based on historical data. Examine retail customer analytics to predict product availability with great accuracy.
Make use of big data to predict whether specific user groups will buy specific goods at a specific price. Predictive analytics in retail lets you transform decision-making to create the best pricing strategies for promotions and discounts.
Reveal the hidden relationships between different products to understand customers' purchasing behavior. Support your promotion strategy using data about different store locations, demographics, and seasons.
Accurately estimate the reasonable cost of acquiring or retaining given groups of customers. Calculate what future income a certain customer can generate.