
Quality Assurance, Quality Control and Testing —
the Basics of Software Quality Management

Quality Assurance, Quality

Control and Testing —

the Basics of Software
Quality Management

Quality Assurance, Quality Control and Testing —
the Basics of Software Quality Management

Introduction

1. Software Testing Basics

 1.1. The Concept of Software Quality

 1.2 Quality Assurance (QA), Quality Control (QC) and Testing – What’s the Difference?

 1.3. The Main Principles of Software Testing

2. The Process of Software Testing in Practice

 2.1. The Role of Testing in Software Development Life Cycle

 2.2. Test Planning: the Artifacts and Strategy

 2.3. Design and Execution: Test Levels and Types

 2.3.1 The Levels of Testing

 2.3.2. The Types and Methods of Software Testing

 2.3.3. Documentation and Reporting

Conclusion

References

2

Quality Assurance, Quality Control and Testing —
the Basics of Software Quality Management

3

Introduction

When you buy a pear, you can instantly evaluate

its quality: the size and shape, ripeness, the

absence of visible bruising. But only as you take

the first bite, will you be able to see if the pear

is really that good. Even an extremely good-

looking pear might taste sour or have a worm in

it.

The same applies to almost any product, be it a

physical object or a piece of software. A website

you find on the internet might seem fine at first,

but as you scroll down, go to another page,

or try to send a contact request, it can start

showing some design flaws and errors.

This makes quality control so important in every

field, where an end-user product is created.

Yet, a sour pear won’t cause as much damage

as a self-driving car with poor quality autopilot

software. A single error in an EHR system might

put a patient’s life at risk, while an eCommerce

website that has performance issues might cost

the owner millions of dollars in revenue.

That is why we at AltexSoft put a premium on

the quality of software we build for our clients.

In this pape ,r we will share our insights on the

quality assurance and testing process, our best

practices and preferred strategies.

Quality Assurance, Quality Control and Testing —
the Basics of Software Quality Management

4

While to err is human, sometimes the cost of a

mistake might be just too high. History knows

many examples of situations when software

flaws might cause billions of dollars in waste or

even lead to casualties: from Starbucks coffee

shops being forced to give away free drinks

because of a register malfunction, to the F-35

military aircraft being unable to detect the

targets correctly because of a radar failure.

In order to make sure the released software

is safe and functions as expected, the concept

of software quality was introduced. It is often

defined as “the degree of conformance to explicit

or implicit requirements and expectations ” [1].

These so-called explicit and implicit expectations

correspond to the two basic levels of software

quality:

 • Functional — the product’s compliance with

functional (explicit) requirements and design

specifications. This aspect focuses on the

practical use of software, from the point of

view of the user: its features, performance,

ease of use, absence of defects.

 • Non-Functional — system’s inner

characteristics and architecture, i.e. structural

(implicit) requirements. This includes the code

maintainability, understandability, efficiency

and securit y [2].

The structural quality of the software is usually

hard to manage: It relies mostly on the expertise

of the engineering team and can be assured

through code review, analysis and refactoring.

At the same time, functional aspect can be

assured through a set of dedicated quality
management activities, which includes quality

assurance, quality control and testing.

1. Software Testing Basics

1.1. The Concept of Software Quality

https://en.wikipedia.org/wiki/List_of_software_bugs

Quality Assurance, Quality Control and Testing —
the Basics of Software Quality Management

5

1.2 Quality Assurance (QA), Quality Control (QC) and Testing
– What’s the Difference?

Often used interchangeably, the three terms refer to slightly different aspects of software quality

management. Despite a common goal of delivering a product of the best possible quality, both

structurally and functionally, they use different approaches to this task.

Quality Assurance is a broad term, explained

on the Google Testing Blog as “the continuous

and consistent improvement and maintenance

of process that enables the QC job”. As follows

from the definition, QA focuses more

on organizational aspects of the quality

management, monitoring the consistency of the

production process.

Through Quality Control the team verifies

the product’s compliance with the functional

requirements. As defined by Investopedia, it is a

“process through which a business seeks to ensure

that product quality is maintained or improved and

manufacturing errors are reduced or eliminated”.

This activity is applied to the finished product

and performed before the product release.

QUALITY ASSURANCE

QUALITY CONTROL

TESTING

QA, QC and Testing in software development process

http://googletesting.blogspot.com/2007/03/difference-between-qa-qc-and-test.html
http://www.investopedia.com/terms/q/quality-control.asp

Quality Assurance, Quality Control and Testing —
the Basics of Software Quality Management

6

In terms of manufacturing industry, it is similar

to pulling a random item from an assembly line

to see if it complies with the technical specs.

Testing is the basic activity aimed at detecting

and solving technical issues in the software

source code and assessing the overall

product usability, performance, security and

compatibility. It has a very narrow focus and is

performed by the test engineers in parallel with

the development process or at the dedicated

testing stage (depending on the methodological

approach to the software development cycle).

QA QC Testing

Purpose Setting up adequate

processes, introducing

the standards of

quality to prevent the

errors and flaws in the

product

Making sure that the

product corresponds

to the requirements

and specs before it is

released

Detecting and solving

software errors and

flaws

Focus Processes Product as a whole Source code and

design

What Prevention Verification Detection

Who The team including the

stakeholders

The team Test Engineers,

Developers

When Throughout the

process

Before the release At the testing stage

or along with the

development process

Quality Assurance, Quality Control and Testing —
the Basics of Software Quality Management

7

If applied to the process of car manufacturing,

having a proper quality assurance process

means that every team member understands

the requirements and performs his/her work

according to the commonly accepted guidelines.

Namely, it is used to make sure that every single

action is performed in the right order, every

detail is properly implemented and the overall

processes are consistent, so that nothing can

cause negative impact on the end product.

Quality control can be compared to having

a senior manager walk into a production

department and pick a random car for an

examination and test drive. Testing activities,

in this case, refer to the process of checking

every joint, every mechanism separately, as

well as the whole product, whether manually

or automatically, conducting c ar sh tests,

performance tests and actual or simulated test

drives.

Due to its hands-on approach, software testing

activities remain a subject of heated discussion.

That is why we will focus primarily on this aspect

of software quality management in this paper.

But before we get into the details, let’s define

the main principles of software testing.

Quality Assurance, Quality Control and Testing —
the Basics of Software Quality Management

8

1.3. The Main Principles of Software Testing

Formulated over the past 40 years, the seven principles of software testing represent the ground

rules for the proces s [3]. These are:

Testing shows
presence of mistakes

Testing is aimed at detecting the defects within a piece of software.

But no matter how thoroughly the product is tested, we can never be

100 percent sure that there are no defects. We can only use testing to

reduce the number of unfound issues.

Exhaustive testing is
impossible

There is no way to test all combinations of data inputs, scenarios

and preconditions within an application. For example, if a single app

screen contains 10 input fields with 3 possible value options each, this

means to cover all possible combinations, test engineers would need

to create 59,049 (310) test scenarios. And what if the app contains

50+ of such screens? In order not to spend weeks creating millions of

such less possible scenarios, it is better to focus on potentially more

significant ones.

Early testing As mentioned above, the cost of an error grows exponentially

throughout the stages of the SDLC. Therefore it is important to start

testing the software as soon as possible, so that the detected issues

are resolved and do not snowball.

Defect clustering This principle is often referred to as an application of the Pareto

Principle to software testing. This means that approximately 80

percent of all errors are usually found in only 20 percent of the system

modules. Therefore, if a defect is found in a particular module of a

software program, the chances are there might be other defects. That

is why it makes sense to test that area of the product thoroughly.

https://www.altexsoft.com/whitepapers/estimating-software-engineering-effort-project-and-product-development-approach/

Quality Assurance, Quality Control and Testing —
the Basics of Software Quality Management

9

While the above-listed principles are

undisputed guidelines for every software

testing professional, there are more aspects to

consider. Some sources note other principles in

addition to the basic ones:

 • Testing must be an independent process

handled by unbiased professionals.

 • Test for invalid and unexpected input values

as well as valid and expected ones.

 • Testing should be performed only on a static

piece of software (no changes should be made

in the process of testing).

 • Use exhaustive and comprehensive

documentation to define the expected test

results.

Pesticide paradox Running the same set of tests again and again won’t help you find

more issues. As soon as the detected errors are fixed, these test

scenarios become useless. Therefore, it is important to review and

update the tests regularly in order to adapt and potentially find more

errors.

Testing is context
dependent

Depending on their purpose or industry, different applications should

be tested differently. While safety could be of primary importance

for a fintech product, it is less important for a corporate website. The

latter, in its turn, puts an emphasis on usability and speed.

Absence-of-errors
fallacy

The complete absence of errors in your product does not necessarily

mean its success. No matter how much time you have spent polishing

your code or improving the functionality, if your product is not useful

or does not meet the user expectations it won’t be adopted by the

target audience.

http://www.testingexcellence.com/seven-principles-of-software-testing/

Quality Assurance, Quality Control and Testing —
the Basics of Software Quality Management

10

The traditional software development life cycle includes 6 consecutive steps: planning, analysis,

design, implementation, testing and maintenance.

2. The Process of Software Testing in
Practice

2.1. The Role of Testing in Software Development Life Cycle

In Waterfall that follows this traditional model,

testing is a separate stage that takes place after

the implementation phase is over. A product,

that is already designed and coded, is being

thoroughly tested before the release.

However, the practice shows that software

errors and defects detected at this stage might

be too expensive to fix, as the cost of an error

tends to increase throughout the software

development process.

Software Development Life Cycle

Quality Assurance, Quality Control and Testing —
the Basics of Software Quality Management

11

For example, if there is an error in the

specifications, detecting it early in the planning

stage wouldn’t cause significant losses to

your business. However, the damage grows

exponentially throughout the further stages

of the process. If such an error is detected

at the design stage, you will need to rework

your designs to fix it. But if you aren’t able to

detect the mistake before the product is built,

you might need to make some major changes

to the design as well as the source code. This

will require a significant amount of effort and

investment.

The same is the case for errors produced in the

process of implementation. If a feature has a

flaw in its logic, building more functionality on

top of it might cause a serious damage in the

long run. It is better to test every feature while

the product is still being built. This is where

iterative agile methods prove beneficial.

The cost of an error throughout the SDLC

TIME

PLANNING DESIGN IMPLEMENTATION TESTING RELEASE

C
O

S
T

https://www.altexsoft.com/whitepapers/agile-project-management-best-practices-and-methodologies/

Quality Assurance, Quality Control and Testing —
the Basics of Software Quality Management

12

Agile Development Cycle

P

L
A

N
N

I N
G D E S I G

N
 D

E
V

E
LO

PM
ENT RELEA

S
E

P R O D U C T
B A C K L O G

S P R I N T
B A C K L O G

S P R I N T

F I N A L
P R O D U C T

 T
E

S

TING

Agile testing is an integral part of the

software development process. By breaking

the development process into smaller parts,

iterations and sprints, agile methodologies allow

the testers to work in parallel with the rest of the

team throughout the process and fix the flaws

and errors immediately after they occur.

The main purpose of such process is to deliver

new software features fast and with the

best quality. Therefore, this approach is less

cost-intensive: Fixing the errors early in the

development process, before more problems

snowball, is significantly cheaper and requires

less effort. Moreover, efficient communication

within the team and active involvement of the

stakeholders speeds up the process and allows

for better informed decisions.

According to the survey conducted by Zephyr,

test management solutions provider, 71 percent

of respondents refer to the process as the top

challenge with agile testing. We at AltexSoft

follow the three major steps in software testing

process: planning, execution and reporting.

http://www.getzephyr.com/sites/default/files/content/resources/Zephyr%20Agile%20Testing%20Infographic_V2.pdf

Quality Assurance, Quality Control and Testing —
the Basics of Software Quality Management

13

The stages of software testing

As any other formal process, testing activities

are typically preceded by thorough preparations

and planning. The main goal of this stage is to

make sure the team understands the customer

objectives, the main purpose of the product,

the possible risks they need to address, and the

outcomes they expect to achieve. One of the

documents created at this stage, the mission
or assignment of testing, serves to solve this

task. It helps align the testing activities with the

overall purpose of the product and coordinates

the testing effort with the rest of the team’s

work.

Roger S. Pressman, a professional software

engineer, famous author and consultant, states:

T E S T P L A N N I N G T E S T E X E C U T I O N T E S T R E P O R T I N G

Activity: Software

requirements and design

review, strategy and plan

development.

Deliverables: Test

Strategy, Test Plan, Test

Estimation

Activity: Designing the

tests, setting up the testing

environment, executing the

test cases.

Deliverables: Test Cases/

Scripts, Test Environment,

Test Results

Activity: Writing reports

and documenting the testing

results.

Deliverables:

Test Results, Test/Defect

Metrics, Test Closure Report

2.2. Test Planning: the Artifacts and Strategy

“Strategy for software testing provides a

roadmap that describes the steps to be conducted

as part of testing, when these steps are planned and

then undertaken, and how much effort, time, and

resources will be required. ” [4]

Quality Assurance, Quality Control and Testing —
the Basics of Software Quality Management

14

Strategy Character Primary Focus Area Use Case

Analytical Preventive The strategy focuses on risk

and requirements analysis to

create a basis for planning,

building and estimating the

tests.

When building a well-

defined product from

scratch.

Model-Based Preventive The system is tested

in accordance with the

predefined model and should

completely correspond to it in

order to be considered valid.

When using an existing

product as a basis for a new

one, or enhancing the legacy

system.

Methodical Preventive This strategy adheres to

a custom pre-planned,

systematic approach.

Often used in heavily-

regulated industries, to build

a product that complies with

the requirements.

Also referred to as test approach or architecture,

test strategy is another artifact of the planning

stage. James Bach, author of several books

and creator of the Rapid testing techniques,

identifies the purpose of a test strategy as “to

clarify the major tasks and challenges of the test

project. ” [5] A good test strategy, in his opinion, is

product specific, practical and justified.

Depending on when exactly in the process they

are used, the strategies can be classified as

preventive or reactive. In addition to that, there

are several types of strategies, that can be used

separately or in conjunctio n [3]:

Quality Assurance, Quality Control and Testing —
the Basics of Software Quality Management

15

Strategy Character Primary Focus Area Use Case

Process/
Standard-
Compliant

Preventive Unlike the previous one, this

strategy relies on a standard

strategy, with little or no

adaptation.

Used by the teams that

lack experience or time for

building a custom testing

approach.

Dynamic Reactive It prioritizes finding as many

errors and defects as possible

(the attack-based approach

and the exploratory approach).

When there is a need to

find and fix the issues with

minimum time and effort.

Consultative/
Directed

Reactive It relies on the users or

developers to define the areas

of testing or even to handle the

tests themselves.

Applied to domain-specific

products, that require

additional expert guidance.

Regression-
averse

Reactive This strategy prioritizes the

automation of functional tests

either before the release or

after.

Best used with live, well-

established products.

While a test strategy is a high-level document,

test plan has a more hands-on approach,

describing in detail what to test, how to test,

when to test and who will do the tes t [6]. Unlike

the static strategy document, that refers to a

project as a whole, test plan covers every testing

phase separately and is frequently updated by

the project manager throughout the process.

Quality Assurance, Quality Control and Testing —
the Basics of Software Quality Management

16

According to the IEEE standard for software test

documentation, a test plan document should

contain the following information:

 • Test plan identifier

 • Introduction

 • References (list of related documents)

 • Test items (the product and its versions)

 • Features to be tested

 • Features not to be tested

 • Item pass or fail criteria

 • Test approach (testing levels, types,

techniques)

 • Suspension criteria

 • Deliverables (Test Plan (this document itself),

Test Cases, Test Scripts, Defect/Enhancement

Logs, Test Reports)

 • Test environment (hardware, software, tools)

 • Estimates

 • Schedule

 • Staffing and training needs

 • Responsibilities

 • Risks

 • Assumptions and Dependencies

 • Approval s [7]

Writing a plan, which includes all of the listed

information, is a time-consuming task. However,

in agile methodologies, with their focus on the

product instead of documents, such a waste of

time seems insufficient.

To solve this problem, James Whittaker, a

Technical Evangelist at Microsoft and former

Engineering Director at Google, introduced The

10 Minute Test Plan approach. The main idea

behind the concept is to focus on the essentials

first, cutting all the fluff by using simple lists and

tables instead of large paragraphs of detailed

descriptions. While the 10-minute time-box

seems a little bit unrealistic (None of the teams

in the original experiment was able to meet this

requirement), the idea of reducing and limiting

the planning time itself is highly reasonable.

As a result, 80 percent of the planning can be

finished within only 30 minutes.

http://googletesting.blogspot.com/2011/09/10-minute-test-plan.html
http://googletesting.blogspot.com/2011/09/10-minute-test-plan.html

Quality Assurance, Quality Control and Testing —
the Basics of Software Quality Management

17

A piece of software is more than several lines of

code. It is usually a multilayer, complex system,

incorporating dozens of separate functional

components and third-party integrations.

Therefore, efficient software testing should

go far beyond just finding errors in the source

code. Typically, the testing covers the following

levels of software.

As a starting point for the test execution, we

need to define what exactly we need to test.

In order to answer this question, QA teams

develop test cases. In a nutshell, a test case

describes the preconditions, desired outcomes

and postconditions of a specific test scenario,

aimed at verifying that a feature meets the basic

requirements.

The next step in test execution is setting up
the testing environment. The main criteria

for this part is to make sure that the testing

environment is as close to the end user’s

actual environment (hardware and software).

For example, a typical test environment for a

web application should include Web Server,

database, OS, and browser.

As soon as the primary preparations are finished,

the team proceeds with the execution. Usually,

the different types of testing are conducted

across several levels, using various tools.

2.3. Design and Execution: Test Levels and Types

2.3.1 The Levels of Testing

C O M P O N E N T /

U N I T T E S T I N G

I N T E G R A T I O N

T E S T I N G

S Y S T E M

T E S T I N G

A C C E P T A N C E

T E S T I N G

Quality Assurance, Quality Control and Testing —
the Basics of Software Quality Management

18

 • Component/Unit testing
The smallest testable part of the software

system is often referred to as a unit. Therefore,

this testing level is aimed at examining every

single unit of a software system in order to make

sure that it meets the original requirements and

functions as expected. Unit testing is commonly

performed early in the development process by

the engineers themselves, not the testing team.

 • Integration testing
The objective of the next testing level is to

verify whether the combined units work well

together as a group. Integration testing is

aimed at detecting the flaws in the interactions

between the units within a module. There are

two main approaches to this testing: bottom-

up and top-down methods. The bottom-up

integration testing starts with unit tests,

successively increasing the complexity of the

software modules under test. The top-down

method takes the opposite approach, focusing

on high-level combinations first and examining

the simple ones later.

B
O

T
T

O
M

-U
P

 T
E

S
T

IN
G T

O
P

-D
O

W
N

 T
E

S
T

IN
G

Integration testing approaches

Quality Assurance, Quality Control and Testing —
the Basics of Software Quality Management

19

 • System testing
At this level, a complete software system is

tested as a whole. This stage serves to verify

the product’s compliance with the functional

and technical requirements and overall quality

standards. System testing should be performed

by a highly professional testing team in an

environment as close to the real business use

scenario as possible.

 • Acceptance testing
This is the last stage of the testing process,

where the product is validated against the

end user requirements and for accuracy. This

final step helps the team decide if the product

is ready to be shipped or not. While small

issues should be detected and resolved earlier

in the process, this testing level focuses on

overall system quality, from content and UI

to performance issues. The acceptance stage

might be followed by an alpha and beta testing,

allowing a small number of actual users to try

out the software before it is officially released.

Unit testing Integration System Acceptance

Why To ensure code

is developed

correctly

To make sure

the ties between

the system

components

function as

required

To ensure the

whole system

works well when

integrated

To ensure

customer’s

and end user

expectations are

met

Who Developers

/ Technical

Architects

Developers

/ Technical

Architects

SDET / Manual QA

/ Business Analyst /

Product Owner

Developer / SDET

/ Manual QA /

Product Owner /

Product End Users

What All new code +

refactoring of

legacy code as

well as Javascript

unit Testing

New web services,

components,

controllers, etc.

Scenario Testing,

User flows

and typical

User Journeys,

Performance and

security testing

Verifying

acceptance tests

on the stories,

verification of

features

Quality Assurance, Quality Control and Testing —
the Basics of Software Quality Management

20

In agile software development, the testing

typically represents an iterative process. While

the levels generally refer to the complete

product, they can also be applied to every

added feature. In this case, every small unit of

the new functionality is being verified. Then the

engineers check the interconnections between

these units, the way the feature integrates with

the rest of the system and if the new update is

ready to be shipped.

Unit testing Integration System Acceptance

When As soon as new

code is written

As soon as new

components are

added

When the product

is complete

When the product

is ready to be

shipped

Where Local Dev +

Continuous

Integration (CI, as

a part of the build

Local Dev + CI

(part of the build)

Staging

Environment

CI / Test

Environment

How
(tools and

methods)

Automated, Junit,

TestNG, PHPUnit

Automated, Soap

UI, Rest Client

Automated

(Webdriver)

Exploratory Testing

Automated

(Cucumber)

Quality Assurance, Quality Control and Testing —
the Basics of Software Quality Management

21

Based on the main objective of the process, the testing can be of different types.

2.3.2. The Types and Methods of Software Testing

Testing Objective Testing Type

Software functions — the testing

of the functions of component or

system.

Functional testing (black-box testing)

 • Requirement-based testing

 • Business-process-based testing

Software characteristics — testing

the quality characteristics of the

component or system.

Non-Functional testing

 • Reliability testing

 • Usability testing

 • Efficiency testing

 • Maintainability testing

 • Portability testing

 • Baseline testing

 • Compliance testing

 • Documentation testing

 • Endurance testing

 • Load testing

 • Performance testing

 • Compatibility testing

 • Security testing

 • Scalability testing

 • Volume testing

 • Stress testing

 • Recovery testing

 • Internationalization

testing and Localization

testing

Software Structure (architecture) —

testing of the structure of the system

or component.

Structural testing (white-box testing)

Changes — testing modifications

and updates to make sure that the

system still works as needed.

Confirmation testing (re-testing), regression testing

Quality Assurance, Quality Control and Testing —
the Basics of Software Quality Management

22

While the above-listed types of testing are

considered the major ones, the list is far from

being complete. Adopted by 66.3 percent of the

team s [8], exploratory testing is one of the most

popular, yet often misunderstood, software

testing approaches.

The term was first described by Cem Kaner, a

software engineering professor and consumer

advocate, as:

As opposed to the scripted approaches (most of

the types listed above), exploratory testing does

not rely on a predefined and documented test

cases and test steps.

Instead, it is interactive and free-form process,

with the main focus on validating user

experience, not code. It has much in common

with the ad hoc or intuitive testing, but is more

systematic. Its procedure includes specific tasks,

objectives, and deliverables. When practiced by

the skilled testers, it can provide valuable and

auditable results.

While testing was traditionally handled

manually, automation trends are gaining wider

popularity. Accordingly, 58.5 percent of ISTQB®

survey respondent s [8] state test automation

activities as the main improvement area in their

organizations. This is probably due to the ever-

growing adoption of agile methodologies, which

promote both test automation and continuous

integration practices as the cornerstone of

effective software development.

The process of test automation is typically

conducted in several consecutive steps:

 • Preliminary Project Analysis

 • Framework Engineering

 • Test Cases Development

 • Test Cases Implementation

 • Iterative Framework Support

“a style of software testing that emphasizes

the personal freedom and responsibility of the

individual tester to continually optimize the value

of her work by treating test-related learning,

test design, test execution, and test result

interpretation as mutually supportive activities

that run in parallel throughout the project. ” [9]

https://www.altexsoft.com/qa-automation-services/

Quality Assurance, Quality Control and Testing —
the Basics of Software Quality Management

23

As there is no perfect software, the testing is

never 100 percent complete. It is an ongoing

process. However, there exists the so-called

“exit criteria”, which defines whether there was

“enough testing” conducted, based on the risk

assessment of the project.

IBM offers several options for exit criteria:

 • Test case execution is 100 percent complete.

 • A system has no high priority defects.

 • Performance of the system is stable regardless

of the introduction of new features.

 • The software supports all necessary platforms

and/or browser

 • User acceptance testing is complete d [10].

Automation can be applied to almost every

testing type, at every level. As a result, the

automation minimizes the human effort

required to efficiently run the tests, reduces

the cost of an error and increases time to

market, as the tests are performed up to 10

times faster, when compared to manual testing

process. Moreover, such a testing method is

As soon as all of these criteria (or any custom

criteria that you have agreed on in your project)

are met, the testing comes to its closure.

The testing logs and status reports are

documented throughout the process of the

test execution. Every issue found in the product

should be reported and handled accordingly.

The test summary and test closure reports are

prepared and provided to the stakeholders. The

team holds a retrospective meeting in order to

define and document the issues that occurred

during the development and improve the

process.

more efficient as the framework covers over 90

percent of the code, uncovering the issues that

might not be visible in manual testing, and can

be scaled as the product grows.

However, the most effective testing approach

combines both manual and automated testing

activities in order to achieve the best results.

2.3.3. Documentation and Reporting

Quality Assurance, Quality Control and Testing —
the Basics of Software Quality Management

24

In 2012, Knight Capital Americas, a global financial firm, experienced an error in its automated routing

system for equity orders - the team deployed untested software to a production environment. As a

result, the company lost over $460 million in just 45 minute s [12], which basically led to its bankruptcy.

History knows many more examples of software incidents which caused similar damage. Yet, testing

remains one of the most disputed topics in software development. Many product owners doubt its

value as a separate process, putting their businesses and products at stake while trying to save an extra

penny.

Despite a widespread misbelief that a tester’s only task is to find bugs [11], testing and QA have a

greater impact on the final product success. Having deep understanding of the client’s business and

the product itself, QA engineers add value to the software and ensure its excellent quality. Moreover,

applying their extensive knowledge of the product, testers can bring value to the customer through

additional services, like tips, guidelines and product use manuals. This results in reduced cost of

ownership and improved business efficiency.

1. http://softwaretestingfundamentals.com/software-quality/

2. http://www.davidchappell.com/writing/white_papers/The_Three_Aspects_of_Software_Quality_v1.0-Chappell.pdf

3. https://www.amazon.com/Foundations-Software-Testing-ISTQB-Certification/dp/1844809897

4. https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0073375977/

5. http://www.satisfice.com/presentations/strategy.pdf

6. http://www.testingexcellence.com/test-strategy-and-test-plan/

7. https://standards.ieee.org/findstds/standard/829-2008.html

8. http://www.istqb.org/references/surveys/istqb-worldwide-software-testing-practices-report.html

9. http://kaner.com/?p=46

10. https://www.ibm.com/developerworks/community/blogs/Govind_Baliga/entry/defining_exit_criteria_for_testing5?lang=en

11. http://www.ibm.com/developerworks/rational/library/apr06/rose/

12. https://www.sec.gov/litigation/admin/2013/34-70694.pdf

Conclusion

References

24

About AltexSoft

US Sales HQ Global HQ

AltexSoft is a Technology & Solution Consulting company co-building technology products to help

companies accelerate growth. The AltexSoft team achieves this by leveraging their technical, process

and domain expertise and access to the best price-for-value Eastern European engineers. Over 100

US-based and 200 worldwide businesses have chosen the company as their Technology Consulting

Partner.

701 Palomar Airport Road,

Suit 300, Carlsbad, CA 92011

+1 (877) 777-9097

32 Pushkinskaya Str.,

Kharkiv, Ukraine 61057

+38 (057) 714-1537

http://www.altexsoft.com/

	2. The Process of Software Testing in Practice
	2. The Process of Software Testing in Practice

