
Estimating Software Engineering Effort:
Project and Product Development Approach

Estimating Software
Engineering Effort:
Project and Product
Development
Approach

W H I T E P A P E R

Estimating Software Engineering Effort:
 Project and Product Development Approach

Estimates Everywhere

1. Conventional Approach: Software Development Life Cycle

2. A Flaw in the Theory: Uncertainty in Project Estimation

3. Seeking a Compromise: Estimation Methods and Tools

 3.1 Mapping out Work Breakdown Structure

 3.2 The Units of Measure in Software Development Estimation

 3.3 Software Development Estimation Techniques

 3.4 Handling Project Estimations at AltexSoft

4. Product Engineering Approach

 #NoEstimates

 References

2

Estimating Software Engineering Effort:
Project and Product Development Approach

3

Estimates Everywhere

How much did it take you to get to work today?

Are you sure that it’ll take the exact same

amount of time to get there tomorrow? Probably

not. Depending on your route, the traffic,

weather or dozens of other circumstances, the

required time might vary. For a short distance

the difference might be insignificant. But if you

have to travel to another city ro country, it can

grow exponentially.

Yet, your commuting time is your own business.

In any professional activity, where a number

of other people or processes depend on your

ability to accomplish your tasks in a timely

manner, the accurate time/effort estimations

are far more crucial.

With the global contract value ranging from
$63.5 billion to $159.1 billion, according to

the different sources, software engineering

is one of the top services to be handled by

outside contractors. In this case, knowing the

estimated time/budget prior to the start of any

cooperation is crucial for businesses. Otherwise

hiring a contractor or an agency without a clear

understanding of the cost-benefit would be a

matter of absolute trust.

At the same time, software engineering is a

complex area of knowledge. It often requires

extensive research and out-of-the-box solutions.

Thus, making any assumptions as for the effort

or duration of one or the other engineering task

is quite risky.

As a Technology & Solution Consulting company,

we conduct on average 30-40 estimates per

month which totals up to 500 estimates per
year. With such vast experience in this area, we

have developed our own approach to quoting

software engineering efforts. In this paper we

cover all aspects of the software development

cost estimation process and the techniques we

typically use. But first, let’s define the role of the

estimates in the software development life cycle.

http://www.statista.com/statistics/190122/total-gloabl-contract-value-information-technology-outsourcing/
https://www.kpmg.com/IN/en/IssuesAndInsights/ArticlesPublications/KPMG-Deal-Tracker/Documents/KPMG-Deal-Tracker-3Q15.pdf

Estimating Software Engineering Effort:
 Project and Product Development Approach

4

Over the last couple of decades, the software

systems have been getting increasingly complex.

At the same time there is barely any industry or

area of knowledge that hasn’t been experiencing

the impact of technology. As a result, there was

a need to formalize the software development

process and determine a common model for its

lif e cycle management.

Software Development Life Cycle (SDLC) was

the first formal project management framework,

used to define the major stages and tasks within

a software development process.

In his book, “Global Business Information

Technology: an integrated systems approach”,

Geoffrey Elliott described the main purpose of

the methodology as:

1. Conventional Approach: Software
Development Life Cycle

Software Development Life Cycle

...“ to pursue the development of information systems in a

very deliberate, structured and methodical way, requiring

each stage of the life cycle from inception of the idea to

delivery of the final system, to be carried out in rigidly and

sequentially.”[1]

Estimating Software Engineering Effort:
Project and Product Development Approach

5

Traditionally, the Software Development Life Cycle includes 6 stages:

Stage Activity Key Roles Deliverables

Planning Preliminary requirements’

analysis, research, basic

project vision and scope.

Customer, sales

representatives, business

analysts

Understanding the

customer needs; basic

project roadmap

and technical

recommendations.

Analysis Identifying the project

goals and functionality,

finalizing the technical

specifications,

requirements and finding

solutions to potentially

challenging issues.

Customer, development

team (business analysts,

technical experts, project

managers)

Complete functional and

design specifications,

Work Breakdown

Structure (WBS), rough

cost estimate.

Design Creating basic system

architecture and visual

design (UI/UX).

Development team

(architects, UX and UI

experts, project managers)

Draft system architecture,

final product design, and

revised estimate.

Implementation Software development

process.

Development team

(software engineers,

architects, project

managers)

Full-featured functioning

software product.

Testing Quality assurance

process.

Development team

(software engineers,

QA engineers, project

managers), Customer

Finalized software

product of the required

quality.

Maintenance Deployment, support and

updates.

Development team

(software engineers,

project managers)

Up-to-date software

product.

Estimating Software Engineering Effort:
 Project and Product Development Approach

6

Providing a roadmap on how the project is

planned and managed from start to an end, the

original SDLC formed the basis for a number

of software development methodologies used

today. The approach that most fully complies

with the given step-by-step process is the

waterfall model.

This model works best with well-defined projects

that have clear requirements and a relatively

small scope of work with low complexity. Such

projects are typically used to solve a secondary

business problem or automate a certain internal

task. It might be a landing page or a simple tool

that streamlines a certain business process. In

this case a fixed price collaboration model is

possible: The effort is specified and outcomes

are predictable.

Being a simple and straightforward approach,

the traditional SDLC still has a number of

downsides. One of them is the huge uncertainty

that occurs at the early stages of the software

development.

https://www.altexsoft.com/wp-content/uploads/2016/04/Agile-Project-Management.-Best-Practices-and-Methodologies-AltexSoft-Whitepaper.pdf
https://www.altexsoft.com/wp-content/uploads/2016/04/Agile-Project-Management.-Best-Practices-and-Methodologies-AltexSoft-Whitepaper.pdf

Estimating Software Engineering Effort:
Project and Product Development Approach

7

 thgiE out of 31 of the most famous failed

projects, state cost overrun and delays in delivery

as major problems that led to the failure. It

means that naht erom 60% of the project success

depends on meeting the cost and time estimates,

provided by the engineering team.

Similarly, Fred Brooks noted in his all-time

classics, The Mythical Man-Month: Essays on

Software Engineering: “More software projects

have gone awry for lack of calendar time than for

all other causes combined.”[2] In his opinion, this

is due to the fact that “...all programmers are

optimists. … the first false assumption that underlies

the scheduling of systems programming is that all

will go well, i.e., that each task will take only as long

as it “ought” to take.”[2]

Aside from being optimistic, engineers are often

under a lot of pressure: After all, they bear the

responsibility of the unrealistic estimates that

result in a delayed project. Like it or not, the

estimates, even the " ballpark” ones, end up being

considered commitments in the client’s mind.

Experienced engineers have an unwritten rule:

when forced to provide a quote, make a guess

about the amount of time and effort the work

might actually take and double it. Yet, even these

preventive measures prove to be useless when

estimates are made too early in the process.

Without proper documentation and detailed

project requirements it’s impossible to make any

accurate guess.

To make a realistic estimate one should

generally consider:

 • Detailed specifications – The more

information you have on the scope of the

project and the desired outcomes the better.

 • Graphic design – Complex UI elements

usually require more engineering effort and

take longer to implement.

 • Technology stack – Depending on project

specifics, the team might need to use complex

tools, third-party APIs or even find custom

2. A Flaw in the Theory: Uncertainty
in Project Estimation

https://en.wikipedia.org/wiki/List_of_failed_and_overbudget_custom_software_projects#Permanent_failures
https://en.wikipedia.org/wiki/List_of_failed_and_overbudget_custom_software_projects#Permanent_failures

Estimating Software Engineering Effort:
 Project and Product Development Approach

8

solutions to some problems. Thus, an estimate

needs to cover the research or the learning

curve involved.

 • The experience and personality factor –

What takes a senior software engineer an hour

to implement might take a trainee several

days. Therefore, estimates should be tailored

to the team that will work on the project.

And this is only the tip of the iceberg. While a

requirement in project documentation might

seem straightforward, it is never too detailed. A

scope of a simple user story “As a User I want
to login into the app” can vary greatly:

 • What type of a login should we implement

(email and password login or social networks

login and if yes, which ones)?

 • Should the fields have any restrictions

(maximum number of characters, type of

characters, password strength requirements)?

 • How should the input fields detect and handle

errors (invalid email, passwor ,d etc...)?

 • Is the “Remember Me” option needed? If

yes, for how long should the information be

stored?

 • Which password recovery option should we

use?

That’s a lot of questions for a simple and

straightforward feature! And those are only the

functional requirements. There are even more

technical details: testing, documentation writing,

code review and refactoring.

As one can clearly see, it is practically impossible

to define the scope of work early in the process.

Usually, the clearer the project requirements

become, the more accurate the quote will

be. A concept that perfectly presents this

phenomenon is the Cone of Uncertainty. It

was introduced by Barry Boehm in his book

Software Engineering Economics (1981) and

then developed further by Steve McConnell in

S" oftware Project Survival Guid "e (1997).

https://en.wikipedia.org/wiki/Cone_of_Uncertainty

Estimating Software Engineering Effort:
Project and Product Development Approach

9

According to this example of the Cone,

represented by the chart above, the highest

level of uncertainty is typically observed early

in the process (planning stage). At this point

the estimate variability might range from 4x to

0.25x. This means that if a project is estimated

to take a month, it could actually end up taking

from 1 week to 4 months.

However, the degree of uncertainty decreases

as the project progresses. Through the analysis

and design stages, the team might reduce the

variability of the estimate. In theory, having

the specifications and design at hand might

decrease the average deviation for a 1-month

project estimate to less than one week. The

exact duration of the project might remain

unclear until the software is deployed.

The examples provided above explain how the

Cone of Uncertainty principle should work in

theory. Based on our practical experience, the

range of deviation often depends on the scope

of the project and may vary accordingly. Yet,

one thing remains clear: the estimates made

early in the process are often referred to as

“guesstimates”, they rarely prove to be of any

value in the long run. Software engineering

estimations require a far more rigid approach.

The C one of U ncertainty

Phases and Milestones

R
el

at
iv

e
C

o
st

R

an
g

e

http://www.oxforddictionaries.com/definition/english/guesstimate

Estimating Software Engineering Effort:
 Project and Product Development Approach

10

As mentioned above, the requirements and project roadmap are usually finalized at the planning/

analysis stage. They serve to minimize the uncertainty of the software development estimation. Thus,

Andrew Stellman and Jennifer Greene, bestselling O’Reilly authors and Agile coaches, in their book

Applied Software Project Management (2005) state: “A sound estimate starts with a work breakdown

structure (WBS).”[3]

3. Seeking a Compromise: Estimation
Methods and Tools

3.1 Mapping out Work Breakdown Structure

Work B reakdown S tructure - sample

Estimating Software Engineering Effort:
Project and Product Development Approach

11

In the PMI Project Body of Knowledge®, WBS

concept is defined as “..a deliverable-oriented

hierarchical decomposition of the work to be

executed by the project team to accomplish

the project objectives and create the required

deliverables.”[4]

Often compared to a backlog in Agile

methodologies, this document breaks down

With a WBS at hand, engineers might be able to

provide an elaborated estimation of the efforts

needed to build a software product. Yet, there

is another aspect of the problem: How can this

effort be measured?

Some teams use relative terms, such as story

points, function points or even T-shirt sizes.

Others prefer more substantial units, estimating

the software engineering effort in man-hours/

days/weeks/months.

3.2 The Units of Measure in Software Development
Estimation

the project into measurable and manageable

deliverables. The WBS focuses on the

deliverables and their visual representation,

while the backlog is centered around the so-

called user stories and features. Being one

of the artifacts in the Scrum methodology,

backlog is often referred to as an Agile WBS.

Both of them are living documents, constantly

“groomed” in the process of the development.

Yet, for business-oriented customers these

numbers don’t make any sense. When

negotiating with the potential contractors

or discussing the project with the in-house

engineering team, they expect to be told when

the product will be ready and how much it

would cost. Thus, the effort estimation is usually

translated into hours/days/weeks/months and

the cost is calculated accordingly.

https://msdn.microsoft.com/en-us/library/hh765979(v=vs.120).aspx#Measure
https://msdn.microsoft.com/en-us/library/hh765979(v=vs.120).aspx#Measure
https://en.wikipedia.org/wiki/Function_point
https://blogs.msdn.microsoft.com/oldnewthing/20090512-00/?p=18293/

Estimating Software Engineering Effort:
 Project and Product Development Approach

12

Depending on the project management methodology that will be used in the process, the most

common estimation techniques are divided into Traditional (usually applied to waterfall method) and

Agile.

Klaus Nielsen in his article " Software Estimation using a Combination of Technique "s provides the

following classification of the most common software engineering assessment techniques[5]:

Traditional

 • Analogy

 • Effort method

 • Programming techniques (lines of code)

 • Expert Judgment

 • Delphi/Wideband Delphi

 • Program Evaluation and Review Technique

(Beta or normal)

 • CoCoMo 1/CoCoMo 2

 • Albrects Function Points

 • Parametric methods (e.g., PRICE)

 • Various top-down or bottom-up techniques

Agile

 • Relative sizing

 • Wideband Delphi

 • Planning poker

 • Affinity estimation

 • Ideal time and elapsed time

 • Disaggregation

 • Bottom-up/top-down estimation

 • Constructive agile estimation

algorithm

 • Time, budget, and costs

estimation

3.3 Software Development Estimation Techniques

Estimating Software Engineering Effort:
Project and Product Development Approach

13

Another approach to this classification can be found in IBM developerWorks knowledge library[6]:

Estimating Software Engineering Effort:
 Project and Product Development Approach

14

3.4 Handling Project Estimations at AltexSoft

We at AltexSoft have developed a unique

approach. Namely, there are three basic

methods we use when estimating a typical

waterfall project:

 • Analogy-based estimation predicts the

required effort based on the information from

former similar projects or features.

 • Statistical method uses statistical data about

the previous experience in the field in general.

 • Expert judgement is used when the in-house

team does not have the experience building

similar features, or the project implies use

of the latest or industry-specific technology

solutions.

Our standard process starts with a high-level

project vision finalization. This document is then

further transformed into the Work Breakdown

Structure. The proposed solution is broken

down into smaller modules and features, to

make sure that we are on the same page with

our client regarding the scope and functionality

of the software product. Every feature within a

module is analyzed and estimated separately,

using one or a combination of the following

methods: Analogy-based estimation, Statistical

method, Expert judgement.

As a result, we get an elaborated document with

the detailed breakdown of the scope of work

and estimated duration of each task. Minimum

and maximum values define the possible

variability range.

Estimating Software Engineering Effort:
Project and Product Development Approach

15

Project Summary

Module Name Feature name Sub-feature Item Description Development
estimate (m/d)
min max

Task
Management
App

Native Android app

Mobile

app core

infrastructure
Android app bootstrap 1 2

Integration with Google

Maps

3 4

General UI Layout 2 3

Backend API

integration

3 4

Push notifications 1 1.5

Social Networks

integration

Facebook, Google+ 2 4

Google Calendar

integration

2 3

Task synchronization Automatic and manual

sync between devices

of one account

1 1.5

Calendar

synchronization

Sync of tasks into/from

Google Calendar

3 4

Having estimated each separate feature, we can now provide a quote for the whole project by summing

up the duration of all tasks.

This is a draft estimate for a hypothetical project. The numbers on the right denote the expected effort, calculated in man-days.

Estimating Software Engineering Effort:
 Project and Product Development Approach

16

Total Features Implementation
min max

77.5 112

Yet, this estimate includes only the time for feature implementation. If we add other related

activities, such as documentation writing, UX/UI design development and implementation, QA and

communication, we will have a more realistic vision of the project scope and duration.

Project Summary

Code Review & Refactoring 4 6

Bug-fixing 8 12

Feedback Processing 8 12

Deployment 1 2

Total Additional Development Tasks
min max

21 32

Software Engineering and Infrastructure Tasks

Software Architecture Design 2 3

Database Implementation 1 2

Project Infrastructure/Environment Setup 1 2

Contingency 16 23

Total Software Engineering and Infrastructure Tasks
min max

20 30

Additional P roject A ctivities

UX Design 14 18

Graphics Design 16 24

Project Stabilization 10 20

Quality Assurance 29 42

Total seitivitcA tcejorP lanoitiddA
min max

69 104

Estimating Software Engineering Effort:
Project and Product Development Approach

17

Adding these results to the development estimate we will get the final quote for the whole project.

While several activities, such as QA and project

management are conducted in parallel to

the main development activities, they do not

normally increase the calendar duration of the

project. In addition, the total estimated scope

of work is provided in man-days and does not

equal the actual calendar duration.

Yet, as we can see, using detailed work

breakdown and dedicated methodologies is

still no panacea: There is still some variability

between the minimum and maximum estimated

scope. That is why we have developed another

approach to handling complex projects.

Project Management and Analysis

Requirements analysis 10 15

Team communication 10.5 14

Project management 30 44

Total sisylanA dna tnemeganaM tcejorP
min max

50.5 73

Planned resources
Min
man/days

Max
man/days

Quantity Position Title

Total Development 133 200 3 Software Engineers

Total QA 30.5 44 1 QA Engineers

Total Data Science 0 0 Data Science Engineers

Total UX Design 15.5 20 1 UX Designers

Total Graphics Design 17.5 26 1 Graphics Designers

Total UI Implementation 0 0 UI Engineers

Total BA 11.5 17 1 Business Analysts

Total PM 30 44 1 Project Manager

Calendar Duration Full Week 14 17

Estimating Software Engineering Effort:
 Project and Product Development Approach

18

4. Product Engineering Approach

As Barry Boehm wrote in his book " Software

Engineering Economic "s :

This is why we have come to using a more solid

approach to building software solutions - The

product development model.

Building complex software products from

scratch requires more flexibility and a long-term

dedicated team effort. The requirements as

well as the whole business model might largely

evolve during the development process, so

extensive investment in research and detailed

planning at this stage is simply unfeasible. That

is why this approach finds its best application

when a customer request goes far beyond a

trivial engineering task, when there is a need

to build a product that plays a major role in the

client’s business. For instance, this model was

successfully used by our team when building

a booking portal for an online travel agency or

a clinic management platform for a practicing

physician.

While traditional SDLC presupposes a project-

based collaboration, based on the waterfall

approach, product engineering mostly complies

with agile methodologies. Therefore, instead

of investing 30-40% of all project time into

planning and analysis, we focus on high-level

requirements and build up a dedicated team,

hand-picked specifically to best fit the client’s

needs, that will handle the development. After

that, a typical agile process takes place: We

deliver functioning product builds iteration by

iteration. We limit the sprint duration to 2-4

weeks to make the progress measurable and to

deliver predictable results.

“Whatever the strengths of a software cost

estimation technique, there is really no way we

can expect the technique to compensate for

our lack of definition or understanding of the

software job to be done.”[7]

https://www.altexsoft.com/case-studies/travel/altexsoft-fareboom-co-building-innovative-travel-and-booking-solution-to-outperform-the-competition/
https://www.altexsoft.com/case-studies/healthcare/altexsoft-upscales-the-clients-business-through-a-custom-clinic-management-tool-and-its-further-transformation-into-a-saas-product/
https://www.altexsoft.com/case-studies/healthcare/altexsoft-upscales-the-clients-business-through-a-custom-clinic-management-tool-and-its-further-transformation-into-a-saas-product/

Estimating Software Engineering Effort:
Project and Product Development Approach

19

Being agile at its core, this approach cannot be

limited by deadlines or commitments from the

very beginning, that’s why a Time and Material

model is the best option. Instead of making

total product estimates, we provide quotes for a

limited set of tasks, one iteration at a time, using

agile software estimation techniques:

 • Planning Poker

 • Relative Sizing

 • Ideal Time & Elapsed Time

Planning Poker is a gamified agile estimation

and planning technique. Instead of speaking

estimates aloud, the team members use a deck

of cards. Estimating every item out of the list

of features proposed for an iteration, each of

the team members puts a card that denotes

how long the task will take in his/her opinion.

After that, the team discusses each proposed

estimate and agrees on one option. This method

eliminates the cognitive bias, allowing every

team member to make an impartial judgement,

based on his/her own opinion.

In Relative sizing estimation the team agrees

on a feature or task that would serve as a

measurement standard. All the further items

will be estimated based on how they compare to

this standard.

Ideal Time & Elapsed Time technique is based

on the assumption that instead of working an

“ideal” 8-hour day, most of the engineers will

spend about 6 hours a day fully focused on the

task. Taking into account this focus factor, the

team will estimate a 24-hours task as the one

that will be finished in 4 days instead of 3 days.

According to the Standish Group 2015 Chaos

Report, only 3% of large projects based on

waterfall approach turn to be successful,

whereas the success rate for agile project of the

same size is 18%.[8] For reference, the success

rate for small waterfall projects is 44%. This

perfectly explains why we encourage our clients

to choose the product development approach.

http://www.standishgroup.com/
https://www.altexsoft.com/blog/business/at-the-kickoff-project-development-vs-product-development/

Estimating Software Engineering Effort:
 Project and Product Development Approach

20

Based on the concept of reducing waste and Just-in-time development, the key principles behind some

of the most popular Agile methodologies, Vasco Duarte in his book #NoEstimates says: “People who

find value on estimates are just addicted to a practice (estimation) to get something they find valuable: plans,

comfort, uncertainty reduction, financial projections, sales proposals… But, again, these are not customer

value. [...] So they immediately fall under the label of waste.”[9]

Still, being able to predict and plan your expenses in advance might be vitally important for your

business. The best way to go about this dilemma is to think of any estimate as of an assumption, not as

something that is set in stone. After all, deadlines and budgets may change. What doesn’t change is the

value and advantage that you gain with high-quality software.

1. http://www.amazon.com/Global-Business-Information-Technology-integrated/dp/0321270126

2. http://www.amazon.com/Mythical-Man-Month-Software-Engineering-Anniversary/dp/0201835959

3. http://shop.oreilly.com/product/9780596009489.do

4. http://www.workbreakdownstructure.com/index.php

5. https://books.google.com.ua/books/about/Software_Estimation_Using_a_Combination.html?id=JU1grgEACAAJ&redir_esc=y

6. http://www.ibm.com/developerworks/library/d-estimation-agile-or-conventional-trs/index.html

7. http://www.amazon.com/Software-Engineering-Economics-Barry-Boehm/dp/0138221227

8. https://www.infoq.com/articles/standish-chaos-2015

9. http://noestimatesbook.com/

#NoEstimates

References

20

https://www.altexsoft.com/wp-content/uploads/2016/04/Agile-Project-Management.-Best-Practices-and-Methodologies-AltexSoft-Whitepaper.pdf
http://www.amazon.com/Global-Business-Information-Technology-integrated/dp/0321270126
http://www.amazon.com/Mythical-Man-Month-Software-Engineering-Anniversary/dp/0201835959
http://shop.oreilly.com/product/9780596009489.do
http://www.workbreakdownstructure.com/index.php
https://books.google.com.ua/books/about/Software_Estimation_Using_a_Combination.html?id=JU1grgEACAAJ&redir_esc=y
http://www.ibm.com/developerworks/library/d-estimation-agile-or-conventional-trs/index.html
http://www.amazon.com/Software-Engineering-Economics-Barry-Boehm/dp/0138221227
https://www.infoq.com/articles/standish-chaos-2015
http://noestimatesbook.com/

About AltexSoft

US Sales HQ Global HQ

AltexSoft is a Technology & Solution Consulting company co-building technology products to help

companies accelerate growth. The AltexSoft team achieves this by leveraging their technical, process

and domain expertise and access to the best price-for-value Eastern European engineers. Over 100

US-based and 200 worldwide businesses have chosen the company as their Technology Consulting

Partner.

701 Palomar Airport Road,

Suit 300, Carlsbad, CA 92011

+1 (877) 777-9097

32 Pushkinskaya Str.,

Kharkiv, Ukraine 61057

+38 (057) 714-1537

http://www.altexsoft.com/

	[1]

